Abstract
Dynamic recrystallization flow curve was studied in AISI 410 martensitic stainless steel by performing hot compression tests in a temperature range of 900–1150 °C and at strain rates of 0.001–1 s −1. The Estrin and Mecking's equation for dynamic recovery was used to model the work hardening region of the flow curves. The critical strain and stress for the initiation of dynamic recrystallization were determined using the method developed by Poliak and Jonas. The critical dislocation density for starting dynamic recrystallization was estimated using the Estrin and Mecking's dynamic recovery model. A modified Arrhenius-type equation was used to relate the critical dislocation density to strain rate and temperature. The proposed model was also verified by the model proposed by Roberts and Ahlblom and developed to describe the variation of dislocation density and fractional softening due to dynamic recrystallization up to the peak of flow curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.