Abstract
The inhibitory effect of acids on microbial growth has long been used to preserve foods from spoilage. While much of the effect can be accounted for by pH, it is well known that different organic acids vary considerably in their inhibitory effects. Because organic acids are not members of a homologous series, but vary in the numbers of carboxy groups, hydroxy groups and carbon–carbon double bonds in the molecule, it has typically not been possible to predict the magnitude, or in some cases even the direction, of the change in inhibitory effect upon substituting one acid for another or to predict the net result in food systems containing more than one acid. The objective of this investigation was to attempt to construct a mathematical model that would enable such prediction as a function of the physical and chemical properties of organic acids. Principal Components Analysis (PCA) was applied to 11 properties for each of 17 acids commonly found in food systems; this resulted in four significant principal components (PCs), presumably representing fundamental properties of the acids and indicating each acid’s location along each of these four scales. These properties correspond to polar groups, the number of double bonds, molecular size, and solubility in non-polar solvents. Minimum inhibitory concentrations (MICs) for each of eight acids for six test microorganisms were determined at pH 5.25. The MICs for each organism were modeled as a function of the four PCs using partial least squares (PLS) regression. This produced models with high correlations for five of the bacteria ( R 2=0.856, 0.941, 0.968, 0.968 and 0.970) and one with a slightly lower value ( R 2=0.785). Acid susceptible organisms ( Bacillus cereus, Bacillus subtilis, and Alicyclobacillus) exhibited a similar response pattern. There appeared to be two separate response patterns for acid resistant organisms; one was exhibited by the two lactobacilli studied and the other by E. coli. Predicting the inhibitory effects of the organic acids as a function of their chemical and physical properties is clearly possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.