Abstract

Abstract A model has been developed aiming at the description of the effect of thermal modification on the electrical conductivity of wood. The intention was to calculate the moisture content (MC) of thermally modified timber (TMT) through the parameters electrical resistance R, wood temperature T, and CIE L*a*b* color data, which are known to correlate well with the intensity of a heat treatment. Samples of Norway spruce (Picea abies Karst.) and beech (Fagus sylvatica L.) samples were thermally modified in laboratory scale at 11 different heat treatment intensities and the resistance characteristics of the samples were determined. Within the hygroscopic range, a linear relationship between the resistance characteristics and the mass loss (ML) through the heat treatment was established. Based on this, a model was developed to calculate MC from R, T, and ML. To validate this model, color values of 15 different TMTs from industrial production were determined for estimation of their ML and fed into the model. MC of the 15 arbitrarily heat-treated TMTs was calculated with an accuracy of ±3.5% within the hygroscopic range. The material-specific resistance characteristics based on experimental data led to an accuracy of ±2.5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call