Abstract

The laser triangulation probe conveniently obtains surface topography data of a measured target. However, compared to the touch probe, its reliability and accuracy can be negatively affected by various factors associated with the object being measured and the probe itself. In this paper, to identify potential compensation strategies to improve the accuracy of depth measurement for laser triangulation probe, the measuring errors caused by an oil film on the measured surface, and the probe’s position and orientation parameters with respect to the measuring object (including scan depth, incident angle, and azimuth angle), were studied. A theoretical model based on the geometrical optics, and an empirical model from the error evaluations, were established to quantitatively characterize the error influence of oil film and probe’s parameters, respectively. We also investigated the influence pattern of different filtering methods with several comparison experiments. The verification procedures, measuring both a free-form surface (chevron-corrugated plate) and a gauge block covered with an oil film, demonstrate that these models and measurement suggestions are viable methods for predicting theoretical error and can be used as compensation references to improve the accuracy of depth measurement to the laser triangulation probe.

Highlights

  • IntroductionAs a result of the merger of technological advances in both the optical and sensor industries [1,2,3], the laser triangulation probe has gradually replaced the contact probe in various fields, and it is usually characterized as a precise measurement device to effectively acquire the depth information of an object

  • As a result of the merger of technological advances in both the optical and sensor industries [1,2,3], the laser triangulation probe has gradually replaced the contact probe in various fields, and it is usually characterized as a precise measurement device to effectively acquire the depth information of an object.it is widely applied in the fields of product design and manufacturing and industrial quality inspection [4,5,6,7]

  • We addressed the error compensation problems of depth measurement with laser triangulation probes

Read more

Summary

Introduction

As a result of the merger of technological advances in both the optical and sensor industries [1,2,3], the laser triangulation probe has gradually replaced the contact probe in various fields, and it is usually characterized as a precise measurement device to effectively acquire the depth information of an object. It is widely applied in the fields of product design and manufacturing and industrial quality inspection [4,5,6,7]. For taking advantage of this optical technology fully on the depth measurement, it is necessary to have a best control of these error factors

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call