Abstract

As more in vitro nanotoxicity data appear in the literature, these findings must be translated to in vivo effects to define nanoparticle exposure risk. Physiologically based pharmacokinetic (PBPK) modeling has played a significant role in guiding and validating in vivo studies for molecular chemical exposure and can develop as a significant tool in guiding similar nanotoxicity studies. This study models the population dynamics of a single cell type within a specific tissue. It is the first attempt to model the in vitro effects of a nanoparticle exposure, in this case aluminum (80 nm) and its impact on a population of rat alveolar macrophages (Wagner et al. 2007, J. Phys. Chem. B 111:7353-7359). The model demonstrates how in vitro data can be used within a simulation setting of in vivo cell dynamics and suggests that PBPK models should be developed quickly to interpret nanotoxicity data, guide in vivo study design, and accelerate nanoparticle risk assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.