Abstract

The ionic conductivity is essential to the performance of a solid oxide fuel cell (SOFC). While the effective conductivity of a porous electrode is frequently involved in SOFC models, the concept of the real (in situ) conductivity in a working electrode is yet to be clarified. To model the in situ ionic and electronic conductivity, the microstructure/geometry and the associated spatial property distribution, as well as the chemical reactions have to be explicitly considered. Here we present a theoretical framework together with phase field modeling to approach this issue. In addition, a recently developed spectral method is used to solve the transport problem in media with complex microstructure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.