Abstract

ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.