Abstract
Cloud computing offers the flexibility to dynamically size the infrastructure in response to changes in workload demand. While both horizontal and vertical scaling of infrastructure is supported by major cloud providers, these scaling options differ significantly in terms of their cost, provisioning time, and their impact on workload performance. Importantly, the efficacy of horizontal and vertical scaling critically depends on the workload characteristics, such as the workload's parallelizability and its core scalability. In today's cloud systems, the scaling decision is left to the users, requiring them to fully understand the tradeoffs associated with the different scaling options. In this paper, we present our solution for optimizing the resource scaling of cloud deployments via implementation in OpenStack. The key component of our solution is the modelling engine that characterizes the workload and then quantitatively evaluates different scaling options for that workload. Our modelling engine leverages Amdahl's Law to model service time scaling in scaleup environments and queueing-theoretic concepts to model performance scaling in scale-out environments. We further employ Kalman filtering to account for inaccuracies in the model-based methodology, and to dynamically track changes in the workload and cloud environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.