Abstract

AbstractThe impact of climate change on the variability of local discharge was investigated in a glacierized high mountain catchment located in the source area of the Ürümqi river, northwest China. We used past climate records to drive a hydrological model to simulate the discharge from 2000 to 2008. The model was then used to project future discharge variations for the period 2041–60, based on a regionally downscaled climate-change scenario combined with three stages of glacier coverage (i.e. compared to the glacier coverage in 2008): unchanged glacier size (100% glacierized), recession of half the glacier area (50% glacierized) and complete disappearance of glaciers (0% glacierized). In each scenario, snowmelt will begin half a month earlier and the discharge will increase in May. For the 100% glacierized scenario, the discharge will increase by 66 ± 35% in a smaller (3.34 km2) and more glaciated (50%) catchment and 33 ± 20% in a larger (28.90 km2) and proportionally less glaciated (18%) catchment. If the glacier area reduces by half, the discharge will decrease by 8 ± 5% and 9 ± 6%, respectively. Once the glacier disappears, the discharge will decrease by 58 ± 20% and 40 ± 13%, respectively. Together, the results indicate that a warming climate and the resulting glacier shrinkage will cause significant changes in the volume and timing of runoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.