Abstract

ABSTRACT Seroprevalence studies assessing community exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Ghana concluded that population-level immunity remained low as of February 2021. Thus, it is important to demonstrate how increasing vaccine coverage reduces the economic and public health impacts associated with SARS-CoV-2 transmission. To that end, this study used a Susceptible-Exposed-Presymptomatic-Symptomatic-Asymptomatic-Recovered-Dead-Vaccinated compartmental model to simulate coronavirus disease 2019 (COVID-19) transmission and the role of public health interventions in Ghana. The impact of increasing vaccination rates and decline in transmission rates due to nonpharmaceutical interventions (NPIs) on cumulative infections and deaths averted was explored under different scenarios. Latin hypercube sampling-partial rank correlation coefficient (LHS-PRCC) was used to investigate the uncertainty and sensitivity of the outcomes to the parameters. Simulation results suggest that increasing the vaccination rate to achieve 50% coverage was associated with almost 60,000 deaths and 25 million infections averted. In comparison, a 50% decrease in the transmission coefficient was associated with the prevention of about 150,000 deaths and 50 million infections. The LHS-PRCC results indicated that in the context of vaccination rate, cumulative infections and deaths averted were most sensitive to vaccination rate, waning immunity rates from vaccination, and waning immunity from natural infection. This study’s findings illustrate the impact of increasing vaccination coverage and/or reducing the transmission rate by NPI adherence in the prevention of COVID-19 infections and deaths in Ghana.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call