Abstract

Knowing the precise boundary for growth of Staphylococcus aureus is critical for food safety risk assessment, especially in the formulation of safe, shelf-stable foods with intermediate relative humidity (RH) values. To date, most studies and resulting models have led to the presumption that S. aureus is osmotolerant. However, most studies and resulting models have focused on growth kinetics using NaCl as the humectant. In this study, glycerol was used to investigate the effects of a glass-forming nonionic humectant to avoid specific metabolic aspects of membrane ion transport. The experiments were designed to produce a growth boundary model as a tool for risk assessment. The statistical effects and interactions of RH (84 to 95% adjusted by glycerol), initial pH (4.5 to 7.0 adjusted by HCl), and potassium sorbate (0, 500, or 1,000 ppm) or calcium propionate (0, 500, or 1,000 ppm) on the aerobic growth of a five-strain S. aureus cocktail in brain heart infusion broth were explored. Inoculated broths were distributed into microtiter plates and incubated at 37°C over appropriate saturated salt slurries to maintain RH. Growth was monitored by turbidity during a 24-week period. Toxin production was explored by enterotoxin assay. The 1,280 generated data points were analyzed by SAS LIFEREG procedures, which showed all studied parameters significantly affected the growth responses of S. aureus with interactions between RH and pH. The resulting growth/no growth boundary is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.