Abstract

Wireless network of wearable biomedical sensors by human body shows great potential to enhance the biometrics performance significantly. Meanwhile, it poses prominent characteristics and challenges to physicians and engineers for its particular medical application as compared to other application of wireless sensor networks (WSN). Mobility pattern plays an important role in designing the wireless body sensor networks (WBSN) and will also affect the accuracy of modeling WBSN in health care application. Much of the mobility scenarios generated in current work of wireless body sensor networks has used fairly simple models to generate the mobile topological graph, which bear little resemblance to the actual mobility patterns. This paper is the first attempt to investigate the mobility model in WBSN based on the existing mobility models in wireless data networks and ad hoc networks. We first briefly review the existing mobility models in related research areas such as wireless ad hoc network and cellular networks. Further on, we propose a dedicated and more realistic mobility model named BAMM (Body Area Mobility Model) for wireless body sensor networks by concentrating on the unique characteristics of WBSN and finally study the effects of mobility on the performance of WBSN by simulation experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call