Abstract

Aims: The chemistry, distribution and mass of the gas in the transitional disk around the 5 Myr old B9.5 V star HD 141569A are constrained. Methods: A quasi 2-dimensional (2D) chemistry code for photon dominated regions (PDR) is used to calculate the chemistry and gas temperatures in the disk. The calculations are performed for several gas distributions, PAH abundances and values of the total gas mass. The resulting CO J=2-1 and J=3-2 emission lines are computed with a 2D radiative transfer code and are compared to observations. Results: The CO abundance is very sensitive to the total disk mass because the disk is in a regime where self-shielding just sets in. The observed CO emission lines are best fit by a power-law gas distribution of 80 M_earth starting at 80 AU from the central star, indicating that there is some gas in the inner hole. Predictions are made for intensities of atomic fine-structure lines. [C I], which is the dominant form of carbon in large parts of the disk, is found to be a good alternative tracer of the gas mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.