Abstract

We simulate the Galactic center nonthermal filaments as magnetized wakes formed dynamically from amplification of a weak (tens of ?G) global magnetic field through the interaction of molecular clouds with a Galactic center wind. One of the key issues in this cometary model is the stability of the filament against dynamical disruption. Here we show two-dimensional MHD simulations for interstellar conditions that are appropriate for the Galactic center. The structures eventually disrupt through a shear-driven nonlinear instability but maintain coherence for lengths up to 100 times their width as observed. The final instability, which destroys the filament through shredding and plasmoid formation, grows quickly in space (and time) and leads to an abrupt end to the structure, in accord with observations. As a by-product, the simulation shows that emission should peak well downstream from the cloud-wind interaction site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.