Abstract

One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments we have included: 1) aerodynamic gas drag, 2) collisional damping between planetesimals, 3) enhanced embryo cross-sections due to their atmospheres, 4) planetesimal fragmentation, and 5) planetesimal driven migration. We find that the gravitational interaction between the embryos and the planetesimals lead to the wholesale redistribution of material - regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near that embryos is cleared of planetesimals before much growth can occur. The remaining 10%, however, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of ~100,000 years, the outer embryo can migrate ~6 AU and grow to roughly 30 Earth-masses. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.