Abstract

The fine particle impact dampers (FPIDs) using plastic deformation of fine particles as irreversible energy sink can exhaust much more vibration energy than single mass impact dampers (SMIDs) and thus can work well in low frequency domain. A numerical model is set up in this paper to capture the complex physics involved in the FPID. Experimental results on a cantilever beam with FPID showed good agreement with the model predictions. We show that in all cases the damping performances of the FPID are much better than that of the SMID, and fine particles enrolled in the FPID play a key role in vibration energy dissipation. The damper clearance and the mass ratio are two important parameters for the damping ability of the FPID, for which an optimal combination of them exists targeting the largest damping ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call