Abstract

The reuse of recycled aggregate concrete (RAC) is being researched all over the world and lots of works are focused on the notched specimen to study the crack path of RAC. A mathematical algorithm of RAC meshing was presented to explore the failure pattern in RAC. According to this algorithm, the interfacial transition zone can be defined to be an actual thickness at the micron level. Further, a new finite element method (FEM) on the complementary energy principle was introduced to simulate the mechanical behavior of RAC’s mesostructure. The compliance matrix of the element with any shape can be calculated and expressed to be a uniform and explicit expression. Several numerical models of RAC were established, in which the effecting factors of the prenotch size, thickness of ITZ, and the distance from the prenotch to the aggregate were taken into account. Hereafter, these RAC models were subjected to uniaxial tension. The effect of the aforementioned factors on the crack path was simulated. The simulated data manifest that both the mesh mode of RAC and the FEM on complementary energy principle are effective approaches to explore the failure pattern of RAC. The size of the prenotch, thickness of ITZ, and distance from the prenotch to the recycled aggregate have a powerful influence on the path and distribution of the isolated crack, width and length of the crack path, and the shape and path of continuous cracks, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.