Abstract

This study aims at highlighting the importance of an accurate characterization of the extra-column volume (ECV) and presents an experimental and computational protocol based on the characterization of the extra-column volume in terms of step-response experiments performed under various flow rates and pressures of 1 bar, 5 bar and 10 bar. The experiments are interpreted by describing the extra-column volume with a compartment model that reflects the geometry of the physical setup and that involves a stagnant zone to account for the non-ideal flow behavior through the piping system. The use of a mathematical model combining the description of the adsorption column and of the ECV can successfully predict experimental CO2–H2 breakthrough profiles performed at different pressures on an activated carbon adsorbent. This work shows how the presence of non-negligible extra-column effects can be accounted for, for the determination of adsorption transport parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.