Abstract
Many central residential forced-air heating and air-conditioning systems contain high pressure drop elements such as high-efficiency or dust-loaded filters, dirty coils, or constricted or undersized ductwork, which are widely assumed to have substantial energy and economic impacts. However, the overall energy and cost consequences of excess static pressures have not been explored in depth across a wide range of climates, homes, or system characteristics. Therefore, we performed 780 annual building energy simulations using BEopt and EnergyPlus to predict the energy and cost impacts of realistic excess static pressures for typical new and existing single-family homes with both permanent split capacitor (PSC) blowers and electronically commutated motors (ECM) in 15 U.S. climate zones. Results demonstrate that excess static pressures can increase annual energy consumption and costs, but the magnitude varies by blower type and climate zone. Moderate increases in static pressures (i.e., from 50 to 150Pa) were predicted to yield minimal increases in annual space conditioning energy costs (i.e., less than 3% across all homes, blowers, and climates), while more extreme increases in static pressure (i.e., from 50 to 350Pa) were predicted to yield average increases in energy costs of ∼9% with ECM blowers and ∼18% with PSC blowers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.