Abstract

Present study investigates the end-use performance of alternative liquid fuels in the current fleet of unmodified light-duty vehicle (LDV) engines. Two mathematical models have been developed that represent the way that various fuel properties affect fuel consumption in spark-ignition (SI) and compression-ignition (CI) engines. Fuel consumption is represented by the results from the New European Driving Cycles (NEDC) in order to reflect the end-use impact. Data-driven black-box modeling and multilinear regression methods were applied to obtain both models. Additionally, quantitative analysis was performed to ensure the statistical significance of inputs (p-value below 5%). Fuel consumption (output) of various alternative fuels can be estimated with high accuracy (coefficient of determination above 0.96), knowing fuel properties (inputs) such as lower heating value, density, cetane/octane number, and oxygen content. The validation procedures confirmed the quality of predictions for both models with the average error being below 2.3%. The model performance for the examined fuels such as hydrotreated vegetable oil (HVO) and ethanol blends showed significant CO2 reduction with high accuracy. Moreover, both models could be used to estimate CO2 tailpipe emissions and are applicable to various liquid SI/CI fuels for LDV engines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.