Abstract

Interference produced in hearing aids by the pulsed RF signal from digital wireless phones has become an increasingly important issue to wireless phone manufacturers and service providers, hearing aid manufacturers and users, and government regulatory agencies. Development and validation of a comprehensive model of the interaction would greatly benefit the efforts to achieve mutual electromagnetic compatibility (EMC). In order to develop reliable accurate methods to measure hearing aid immunity, an exact mathematical relationship must be demonstrated between the interference generated in hearing aids using a dipole with a standardized test signal [the input referenced interference level (IRIL)] and that produced by actual wireless phones with various signal formats [the overall input referenced interference level (OIRIL)]. A set of theoretical conversion factors has been developed and applied to predict OIRIL interference from the standard IRIL, measured immunity value. A square-law relationship exists within the linear response region of the hearing aid such that each 1 dB increase in RF power (or field strength in decibels V/m) results in a 2 dB sound pressure level (SPL) increase in acoustic power (or sound pressure level). Hence, the IRIL for any given field strength is obtained by doubling (in decibels) the change in field strength and adding the result to the reference IRIL (in decibels SPL). Subtracting 7.60 dB [for time-division multiple access (TDMA)-50 Hz] or 10.68 dB [for TDMA-217 Hz or code-division multiple access (CDMA)] from the IRIL predicts the corresponding OIRIL. The lower and upper limits of the predicted OIRIL are constrained by the measured ambient sound level and the amplifier saturation, respectively. The model predictions are valid when comparable field strength gradients and distributions, separation distances and orientations are maintained between the hearing aid and the RF emitter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.