Abstract

We present a novel mathematical model for collagen deposition and alignment during dermal wound healing, focusing on the regulatory effects of transforming growth factor-beta (TGFbeta.) Our work extends a previously developed model which considers the interactions between fibroblasts and an extracellular matrix composed of collagen and a fibrin based blood clot, by allowing fibroblasts to orient the collagen matrix, and produce and degrade the extracellular matrix, while the matrix directs the fibroblasts and control their speed. Here we extend the model by allowing a time varying concentration of TGFbeta to alter the properties of the fibroblasts. Thus we are able to simulate experiments which alter the TGFbeta profile. Within this model framework we find that most of the known effects of TGFbeta, i.e., changes in cell motility, cell proliferation and collagen production, are of minor importance to matrix alignment and cannot explain the anti-scarring properties of TGFbeta. However, we find that by changing fibroblast reorientation rates, consistent with experimental evidence, the alignment of the regenerated tissue can be significantly altered. These data provide an explanation for the experimentally observed influence of TGFbeta on scarring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.