Abstract

Positive centerline macrosegregation is an undesired casting defect that frequently occurs in the continuous casting process of steel strands. Mechanical softreduction (MSR) is a generally applied technology to avoid this casting defect in steel production. In the current paper, the mechanism of MSR is numerically examined. Therefore, two 25-m long horizontal continuous casting strand geometries of industrial scale are modeled. Both of these strand geometries have periodically bulged surfaces, but only one of them considers the cross-section reduction due to a certain MSR configuration. The macrosegregation formation inside of these strands with and without MSR is studied for a binary Fe-C-alloy based on an Eulerian multiphase model. Comparing the macrosegregation patterns obtained for different casting speed definitions allows investigating the fundamental influence of feeding, bulging and MSR mechanisms on the formation of centerline macrosegregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call