Abstract

Lithium-ion (Li-ion) batteries with nickel-manganese-cobalt (NMC) cathode and graphite anode are popularly used in portable electronic devices and electric vehicles. Calendar loss of the lithium-ion battery is a dominating factor in battery degradation during long-term usage. However, only a few physics-based modeling works were reported on studying the calendar capacity loss of NMC-graphite Li-ion batteries, while none of them can depict the complete voltage behavior during the storage period. In this work, a Pseudo-2D model for an NMC-graphite Li-ion battery was developed and applied to investigate its calendar loss behavior. Various factors affecting the calendar loss of the NMC-graphite batteries were systematically studied, with the results validated using experimental data of a Sanyo 18,650 cylindrical cell. It was found that at 25 °C working temperature and 100% state of charge (SOC), the capacity drops 6.3% of its original capacity after 10 months. Our simulation results demonstrate that a lower SOC and a proper cell working temperature could prolong the battery life during the storage period. This modeling work can help improve understanding of the calendar loss behavior of NMC-graphite Li-ion batteries and provide valuable guidance for battery performance optimization in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.