Abstract

Corn bran was microfluidized through a 200-μm channel in the pressure range of 124.1–158.7 MPa for 1–5 passes following the central composite experimental design. Physicochemical properties and antioxidant properties of microfluidized bran samples were measured and fitted to the second order polynomial model. The response surface equations obtained showed that all the properties examined had a positive linear relationship with pressure and a negative quadratic relationship with number of passes except for ABTS radical scavenging activity which was quadratically related to both processing parameters. The number of passes generally had a more pronounced effect on the examined properties compared with pressure. Within the experimental range, the maximum values of swelling capacity, water-holding capacity, and oil-holding capacity were respectively 10.62 ml/g d.w. (at 158.7 MPa), 5.49 g water/g d.w. (at 158.7 MPa), and 4.61 g oil/g d.w. (at 124.1 MPa); the maximum values of surface reactive phenolic content, DPPH and ABTS radical scavenging activities were 148.80 mg/FAE g d.w. (at 158.7 MPa), 50.02 μmol TE/g d.w. (at 158.7 MPa), and 47.90 μmol TE/g d.w. (at 145.9 MPa), respectively. All maximum values of the properties occurred at 5 passes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.