Abstract
Dynamic pull‐in behavior of nonlocal functionally graded nano‐actuators by considering Casimir attraction is investigated in this paper. It is assumed that the nano‐bridge is initially at rest and the fundamental frequency of nano‐structure as a function of system parameters is obtained asymptotically by Iteration Perturbation Method (IPM). The effects of actuation voltage, nonlocal parameter, properties of FGM materials and intermolecular force on the dynamic pull‐in behavior are studied. It is exhibited that two terms in series expansions are adequate to achieve the acceptable approximations for fundamental frequency as well as the analytic solution. Comparison between the obtained results based on the asymptotic analysis and the reported experimental and numerical results in the literature, verify the effectiveness of the asymptotic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.