Abstract

AbstractThis paper reports our research effort aiming to investigate the applicability of integrating a hydrological model and the Hydrological Predictions for the Environment (HYPE) model with a geographic information system (GIS) to examine the effect of land use change and climate change on stream-flows with the Kamo River basin (KRB) located in the central Honshu island, Japan as a case study. The goal of this study was to provide important information for understanding water discharge variations as a basis to guide water resource managers in environmental change decisions in this river basin. This goal was accomplished by two steps (i) comparing HYPE-generated hydrographs for various meteorological data from history to present at current land use (S1 and S2); and (ii) comparing HYPE-generated hydrographs for historical and current land use scenarios at current climate (S3 and S4). The calibration and validation results suggest that HYPE performs well in the case study site for daily simulations. The results of S1–S2 indicate that with the impact of climate change, the trend of annual and seasonal stream flows at the Kamo River Basin outlet would decrease. However, there is no evidence to indicate that the flood risk would be decreasing. The results of S3–S4 show that the conversion of forest, glass and agriculture (FGA) into urban area would induce high peak flows, a reduction in annual evaporation and an increase in annual surface runoff.KeywordsLand use changeClimate changeHydrologic modelingHYPEGISKamo River basin

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call