Abstract

The effects of interior headland restoration on estuarine sediment transport processes were assessed through process-based numerical modeling. Three proposed interior headland restoration scenarios in the Grand Bay estuary (Mississippi/Alabama) were modeled using Delft3D to understand impacts on suspended sediment concentrations, bed level morphology, and sediment fluxes under present-day conditions and a sea level rise (SLR) of 0.5 m, representing a high projection of SLR by the year 2050. Model results showed localized differences in bed levels near the restored features after a year of simulated morphologic change. The restored headland features acted as a sediment source to the immediate surroundings while also providing some non-significant sheltering effect of backshore shoals and marsh shorelines. Sediment fluxes were sensitive to wind directions and the presence of the restored headlands. However, regardless of wind direction, mean sea level, or restoration action, the greatest sediment fluxes were always export fluxes from the estuary, which were further increased with increased sea level. Suspended sediment concentrations were highly influenced by SLR in a non-linear manner. Sediment concentrations both increased and decreased depending on depth under SLR. Furthermore, SLR allowed for the suspension and deposition of sediments on the marsh platform. Overall, the influence of SLR was more impactful to changing sediment dynamics than the influence of the restoration features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.