Abstract
Hurricanes account for much of the spatial and temporal variation in forest productivity and soil organic matter pools in many forest ecosystems. In this study, we used an ecosystem level model, TOPOECO, to simulate the effects of Hurricane Hugo (18 September 1989) on spatial and temporal patterns of gross primary productivity (GPP), net primary productivity (NPP), soil organic carbon (SOC) and nitrogen over the entire Luquillo Experimental Forest (LEF), Puerto Rico, a tropical rainforest. Our simulation results indicated that simulated annual GPP increased by an average of 30% five years after Hugo in the Tabonuco forest at low elevations where there was a fast recovery of the canopy, whereas simulated GPP decreased by an average of 20% in the Palm and Dwarf forests at high elevations as a result of the slow recovery of the canopy. Simulated annual NPP in the Palm and Dwarf forests also did not recover to pre-Hugo levels within 5 years. Simulated storages of SOC, CO2 emission from decomposition of SOC and total soil nitrogen increased slightly but N mineralization rate increased significantly in all four vegetation types due to the massive input of plant materials from Hugo at low elevations and the slow decomposition at high elevations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.