Abstract
It is well known that the emissions of hot gases from various power stations and other industrial sources in the regional atmosphere cause decrease in rainfall around these complexes. To overcome this shortage, one method is to introduce artificially conducive aerosol particles in the atmosphere using aeroplane to increase rainfall. To prove the feasibility of this idea, in this paper, a nonlinear mathematical model is proposed involving five dependent variables, namely, the volume density of water vapour, number densities of cloud droplets and raindrops, and the concentrations of small and large size conducive aerosol particles. It is assumed that two types of aerosol particles are introduced in the regional atmosphere, one of them is of small size CCN type which is conducive to increase cloud droplets from vapour phase, while the other is of large size and is conducive to transform the cloud droplets to raindrops. The model is analyzed using stability theory of differential equations and computer simulation. The model analysis shows that due to the introduction of conducive aerosol particles in the regional atmosphere, the rainfall increases as compared to the case when no aerosols are introduced in the atmosphere of the region under consideration. The computer simulation confirms the analytical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.