Abstract

Water resource development has decreased water delivery to marshes in the Nueces Delta, Corpus Christi, Texas, USA by 45% since 1983, which has led to marsh degradation. Recent management actions will allow for partial hydrological restoration of the marsh, but there is a need to understand the dynamics and the interactive roles of climate and water cycle changes in order to predict changes in salt marshes in the future. In this study, a model of multi-species competition with respect to hydrological change was developed to perform modeling experiments of the effects of water elevation on development of marsh plant species. Nueces Delta plants were divided into two functional groups: (1) clonal stress tolerant plants (Batis maritima, Distichlis spicata, Monanthcloe littoralis, and Salicornia virginica), and (2) clonal dominants (Borrichia frutescens and Spartina alterniflora). Growth rates were calculated for three climate regimes (wet, moderate, and dry), and in three elevation locations (low, mid, and high marsh). The model predicts reductions in plant cover in both drought and moderate conditions. Marsh plant coverage increases only during wet conditions and when there is space available for plant expansion. It is concluded that changes in areal extent of the marsh largely depend on water flow and elevation, which in turn depends on the quantity of fresh water flowing into the marsh. However, under current climate and water management conditions, the marsh will degrade further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.