Abstract
The electrochemistry of transition metal oxide systems is gaining much interest in the context of energy storage. Yet, predicting the redox behavior of such systems remains very challenging for computational chemistry. In this work, we examined instead a computational strategy for related nano-sized molecular transition metal polyoxoanions, as such polyoxometalates (POMs) can be treated at manageable computational costs. As an example, we addressed the effects of an aqueous electrolyte at the atomic scale for estimating the standard reduction potentials Mn(IV/III) and Mn(III/II) of the tri-Mn-substituted W-based Keggin ion. The electrolyte model involves explicitly solvated Li+ counterions and accounts for the fluctuating aqueous medium, described in first-principles molecular dynamics simulations. After equilibration, the systems showed different local structures of the electrolyte around the POM, depending on the oxidation state of the Mn centers. These varying local structures affect the Mn reduction p...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.