Abstract
Ascospores are the most important inoculum source of citrus black spot (CBS), caused by Guignardia citricarpa, but pseudothecium maturation and ascospore release are inadequately studied. Guignardia ascospore trapping and concomitant weather data were obtained for three localities over three seasons (July to March 2006 to 2009) in the Limpopo province of South Africa. Degree-days accumulated until first seasonal ascospore discharge (>10°C with 1 July as biofix) (DDtemp), and DDtemp accumulated on rainy (rainfall >0.1 mm) (DDrain) and moist days (vapor pressure deficit <5 hPa) (DDvpd) were used in two Gompertz models to predict onset of ascospore release: a temperature model [Event = exp(-exp(-(-2.725 + 0.004 × DDtemp)))] and a temperature/moisture model [Event = exp(-exp(- (-3.238 + 0.008 × DDvpd + 0.004 × DDtemp - 0.009 × DDrain)))] (R(2) = 0.608 and 0.658, respectively). Both models predicted a delay in pseudothecium maturation in climates with colder winters and springs. A Gompertz equation was also used to predict the proportion of Guignardia ascospores trapped (PAT) per season from DDtemp data accumulated on wet or moist days (DDwet2) from the first seasonal ascospore discharge [PAT = exp(-4.096 × exp(-0.005 × DDwet2); R(2) = 0.908]. The PAT model predicted lag phases and 7-day peaks in ascospore release patterns with reasonable accuracy. These models can be used to predict the onset and dynamics of ascospore release in climatically diverse regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.