Abstract
The effect of aerobic and anaerobic conditions on growth initiation by a 10-strain composite of Listeria monocytogenes (104 CFU/ml) was evaluated in tryptic soy broth with 0.6% yeast extract (TSBYE) as a function of 220 combinations of pH (3.82 to 7.42), sodium lactate (SL) (0 to 10%, vol/vol), and sodium diacetate (SD) (0 to 0.5%, wt/vol) at 10 or 30°C (a slightly abusive and the optimal growth temperature, both above the growth limiting range of 0 to 3°C for L. monocytogenes) in 96-well microplates. In addition, four probability-of-growth models were developed to quantify the effect of 346 aerobic and 346 anaerobic combinations of temperature (4 to 30°C), SL (0 to 6%, vol/vol), and SD (0 to 0.5%, wt/vol) in the presence of NaCl (0.5 or 2.5%, wt/vol) on the growth–no growth responses of the same L. monocytogenes strain composite, with a microplate reader. Growth responses were evaluated turbidimetrically (620 nm) every 5 days for a total of 40 days. Data were modeled with logistic regression to determine the growth–no growth interfaces. The minimum pH values at which growth of L. monocytogenes occurred were higher under anaerobic than under aerobic conditions, and this difference was more evident at 10°C or at higher SL and SD concentrations. The MIC of SD decreased with increasing SL levels. Anaerobic storage reduced the levels of SL-SD, allowing the growth of L. monocytogenes compared with aerobic storage, especially at low temperatures. In the presence of 2.5% NaCl, the MICs for SD were lower than those obtained with 0.5% NaCl, especially at 4 and 10°C, or in the presence of 5 to 6% SL. The developed models for anaerobic incubation showed good performance (80% successful predictions; i.e., in 40 of 50 comparisons) with independent data from studies on survival-growth of L. monocytogenes on meat products. The study provides quantitative data on the antimicrobial activity of SL (0 to 10%) and SD (0 to 0.5%), temperature (4 to 30°C), and pH (3.82 to 7.42) and on the probability of growth of L. monocytogenes under anaerobic or aerobic conditions in the presence of 0.5 or 2.5% NaCl, and hence, addresses important needs for risk assessment activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.