Abstract

Soil salinity restricts plant growth, affects soil water balance and nitrous oxide (N2O) fluxes and can contaminate surface and groundwater. In this study, the Denitrification Decomposition (DNDC) model was modified to couple salt and water balance equations (SALT-DNDC) to investigate the effect of salinity on water balance and N2O fluxes. The model was examined against four growing seasons (2008–11) of observed data from Lethbridge, Alberta, Canada. Then, the model was used to simulate water filled pore space (WFPS), salt concentration and the N2O flux from agricultural soils. The results show that the effects of salinity on WFPS vary in different soil layers. Within shallow soil layers (<20 cm from soil surface) the salt concentration does not affect the average WFPS when initial salt concentrations range from 5 to 20 dS/m. However, in deeper soil layers (>20 cm from soil surface), when the initial salt concentration ranges from 5 to 20 dS/m it could indirectly affect the average WFPS due to changes of osmotic potential and transpiration. When AW is greater than 40%, the average growing season N2O emissions increase to a range of 0.6–1.0 g-N/ha/d at initial salt concentrations (5–20 dS/m) from a range of 0.5–0.7 g-N/ha/d when the salt concentrations is 0 dS/m. The newly developed SALT-DNDC model provides a unique tool to help investigate interactive effects among salt, soil, water, vegetation, and weather conditions on N2O fluxes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.