Abstract

The COVID-19 pandemic spread rapidly worldwide. On September 15, 2021, a total of 546,251 confirmed cases were recorded in Saudi Arabia alone. Saudi Arabia imposed various levels of lockdown and forced the community to implement social distancing. In this paper, we formulate a mathematical model to study the impact of these measures on COVID-19 spread. The model is analyzed qualitatively, producing two equilibrium points. The existence and stability of the COVID-19 free equilibrium and the endemic equilibrium depend on the control reproduction number, . These results are in good agreement with the numerical experiments. Moreover, the model is fitted with actual data from the COVID-19 dashboard of the Saudi Ministry of Health. We divide the timeline from March 12, 2020, to September 23, 2020, into seven phases according to the varied applications of lockdown and social distancing. We then explore several scenarios to investigate the optimal application of these measures and address whether it is possible to rely solely on social distancing without imposing a lockdown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call