Abstract
This study investigates the effect of land use and land cover (LULC) and climate change on catchment hydrology and soil erosion in the Dano catchment in south-western Burkina Faso based on hydrological and soil erosion modeling. The past LULC change is studied using land use maps of the years 1990, 2000, 2007 and 2013. Based on these maps future LULC scenarios were developed for the years 2019, 2025 and 2030. The observed past and modeled future LULC are used to feed SHETRAN, a hydrological and soil erosion model. Observed and modeled climate data cover the period 1990-2030. The isolated influence of LULC change assuming a constant climate is simulated by applying the seven LULC maps under observed climate data of the period 1990-2015. The isolated effect of climate scenarios (RCP4.5 and 8.5 of CCLM4-8) is studied by applying the LULC map of 1990 to the period 1990-2032. Additionally, we combined past modeled climate data and past observed LULC maps. Two chronological and continuous simulations were used to estimate the impact of LULC in the past and in the future by gradually applying the LULC maps. These simulations consider the combined impact of LULC and climate change. The simulations that assumed a constant climate and a changing LULC show increasing water yield (3.6%-46.5%) and mainly increasing specific sediment yield (-3.3%-52.6%). The simulations that assume constant LULC and climate as changing factor indicate increases in water yield of 24.5% to 46.7% and in sediment yield of 31.1% to 54.7% between the periods 1990-2005 and 2006-2032. The continuous simulations signal a clear increase in water yield (20.3%-73.4%) and specific sediment yield (24.7% to 90.1%). Actual evapotranspiration is estimated to change by between -7.3% (only LUCC) to +3.3% (only climate change). When comparing observed LULC and climate change alone, climate change has a larger impact on discharge and sediment yield, but LULC amplifies climate change impacts strongly. However, future LULC (2019-2030) will have a stronger impact as currently observed.
Full Text
Topics from this Paper
Land Use And Land Cover
Land Use And Land Cover Change
Future Land Use And Land Cover
Land Use And Land Cover Maps
Increase In Water Yield
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Advances in Meteorology
Jan 1, 2015
Atmospheric Environment
Nov 1, 2009
Geomorphology
Aug 1, 2023
Science of The Total Environment
Nov 1, 2019
Environmental Development
Sep 1, 2021
Environmental Monitoring and Assessment
Sep 1, 2022
Hydrological Sciences Journal
Mar 12, 2019
International Journal of Plant & Soil Science
Jun 8, 2023
Geocarto International
Dec 13, 2022
Agronomy
Aug 20, 2023
Journal of Environmental Management
Aug 1, 2022
Water Resources Research
Jul 1, 2008
Grassroots Journal of Natural Resources
Dec 30, 2021
Science of The Total Environment
Science of The Total Environment
Dec 1, 2023
Science of The Total Environment
Nov 1, 2023
Science of The Total Environment
Nov 1, 2023
Science of The Total Environment
Nov 1, 2023
Science of The Total Environment
Nov 1, 2023
Science of The Total Environment
Nov 1, 2023
Science of The Total Environment
Nov 1, 2023
Science of The Total Environment
Nov 1, 2023
Science of The Total Environment
Nov 1, 2023
Science of The Total Environment
Nov 1, 2023