Abstract

Abstract This is the first of a two-part article that investigates the impact of land surface evaporation variability on the interannual variability of precipitation and compares it with the impact caused by sea surface temperature variability. Previous works by Koster and Suarez and Koster et al. provide the general strategy to control oceanic and land surface evaporation. For this part of the study, their numerical experiments are repeated using the Center for Ocean–Land–Atmosphere Studies (COLA) general circulation model. However, emphasis is put on the dynamics of the response, including a discussion of the changes in the mean climate; in particular, it is observed that the suppressed land evaporation variability changes the mean Northern Hemisphere storm track and the mean position of the intertropical convergence zone, which in turn affect the mean precipitation. The analysis of the precipitation variance reveals a general agreement with previous works for the midlatitudes, whereas in the Tropics a ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.