Abstract
A back propagation artificial neural network (BPANN) prediction model for warpage of injection-molded polypropylene was developed based on an orthogonal design method. The BPANN model was trained by the input and output data obtained from the moldflow software platform simulations. It is proved that the BPANN model can predict the warpage with reasonable accuracy. Utilizing the BPANN model, the effects of the process parameters, packing pressure (Pp), melt temperature (Tme), mold temperature (Tmo), packing time (tp), cooling time (tc), and fill pressure (pf), on the warpage were investigated. The most important process parameter affecting the warpage was Pp, and the second most important was Tme. The rest of the process parameters, Tmo, tp, tc, and pf, were found to be relatively less influential. Warpage increased with elevating Tmo. In contrast, an increase in Pp and Tme caused the warpage to decrease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.