Abstract

A volume-averaged model for finite-rate diffusion of hydrogen in the melt is developed to predict pore formation during the solidification of aluminum alloys. The calculation of the micro-/macro-scale gas species transport in the melt is coupled with a model for the feeding flow and pressure field. The rate of pore growth is shown to be proportional to the local level of gas supersaturation in the melt, as well as various microstructural parameters. Parametric studies of one-dimensional solidification under an imposed temperature gradient and cooling rate illustrate that the model captures important phenomena observed in porosity formation in aluminum alloys. The transition from gas to shrinkage dominated porosity and the effects of different solubilities of hydrogen in the eutectic solid, capillary pressures at pore nucleation, and pore number densities are investigated in detail. Comparisons between predicted porosity percentages and previous experimental measurements show good correspondence, although some uncertainties remain regarding the extent of impingement of solid on the pores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.