Abstract

Solid-state batteries offer the potential to improve safety, cyclability, and energy density of Li-ion batteries. However, their conductivity, stability, and processing limit their use. To this end, the effects of solid electrolyte microstructure on overall battery performance are determined. The conductivities of Al-doped Li7La3Zr2O12 (Al-LLZO), with a range of microstructures, are found using a resistor network model. Varying electrolyte properties are combined with a Li-metal negative electrode and LiCoO2 positive electrode in a 1-D continuum model to predict the effects on performance. Simulations suggest that the ratio of electrolyte conductivity to electrolyte thickness must remain above 10 S m−2 to maintain high energy and power output, particularly at C-rates greater than 10. To maintain conductivity near the grain interior conductivity, a grain size at least 10,000 times larger than grain boundary thickness is needed. Further improvements in grain size, grain boundary thickness, and void fraction beyond typical Al-LLZO microstructures, with the goal of higher conductivities, are predicted to have diminishing returns in overall battery performance, even at more sensitive high C-rates up to 100.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call