Abstract

In this work, the numerical modeling of the flow pattern and heat transfer in a polydisperse bubbly turbulent flow after sudden enlargement in a tube is performed. The pattern of average and fluctuation twophase flows at small volumetric gas flow rate ratios (β ≤ 10%) is qualitatively similar to the one-phase liquid flow pattern. It is shown that small bubbles are present almost throughout the entire cross section of a tube, while great bubbles generally pass through the flow core and the shear mixing layer. The addition of air bubbles to a one-phase liquid flow appreciably intensifies heat transfer (up to two times), and these effects become stronger with an increase in the diameter of bubbles and the volumetric gas flow rate ratios gasratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call