Abstract
Introduction. Individuals from older populations tend to have more than 1 health condition (multimorbidity). Current approaches to produce economic evidence for clinical guidelines using decision-analytic models typically use a single-disease approach, which may not appropriately reflect the competing risks within a population with multimorbidity. This study aims to demonstrate a proof-of-concept method of modeling multiple conditions in a single decision-analytic model to estimate the impact of multimorbidity on the cost-effectiveness of interventions. Methods. Multiple conditions were modeled within a single decision-analytic model by linking multiple single-disease models. Individual discrete event simulation models were developed to evaluate the cost-effectiveness of preventative interventions for a case study assuming a UK National Health Service perspective. The case study used 3 diseases (heart disease, Alzheimer's disease, and osteoporosis) that were combined within a single linked model. The linked model, with and without correlations between diseases incorporated, simulated the general population aged 45 years and older to compare results in terms of lifetime costs and quality-adjusted life-years (QALYs). Results. The estimated incremental costs and QALYs for health care interventions differed when 3 diseases were modeled simultaneously (£840; 0.234 QALYs) compared with aggregated results from 3 single-disease models (£408; 0.280QALYs). With correlations between diseases additionally incorporated, both absolute and incremental costs and QALY estimates changed in different directions, suggesting that the inclusion of correlations can alter model results. Discussion. Linking multiple single-disease models provides a methodological option for decision analysts who undertake research on populations with multimorbidity. It also has potential for wider applications in informing decisions on commissioning of health care services and long-term priority setting across diseases and health care programs through providing potentially more accurate estimations of the relative cost-effectiveness of interventions.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.