Abstract
Here we use human embryonic stem cells (hESCs) and human-induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells to model chronic oxidative stress in vitro. This model allows us to understand the evolution of chronic stress response in RPE in vivo, as well as to monitor microRNAs changes. Finally, we use this in vitro model to identify a partial agonist of NRF2 that is protective against reactive oxygen species (ROS)-induced cytotoxicity. The hESCs and hiPSCs were differentiated toward an RPE fate. Upon maturation, RPE cells were subjected to chronic oxidative stress using Paraquat (PQ). The cells were then analyzed using immunocytochemistry and quantitative RT-PCR to look for changes in gene expression and microRNA changes. Small molecules targeting NRF2 pathways were utilized to look for protection against oxidative stress-induced apoptosis. We show that 160 μM PQ can be used to generate a model of chronic oxidative stress in RPE cells derived from hESCs and hiPSCs. Using this model, we characterize the NRF2 pathway effectors during the early and late stages of chronic oxidative stress and identify microRNAs changes during oxidative stress. We find that hsa-miR144 modulates NRF2 activity during ROS stress. Lastly, we found a small molecule modulator of NRF2 that plays a protective role against oxidative stress-induced RPE apoptosis. In summary, pluripotent stem cell-derived retinal cells can be used to model retinal diseases in a dish. This can provide an unprecedented opportunity to understand the evolution of disease processes and allow us to identify novel therapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Investigative ophthalmology & visual science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.