Abstract

The present investigation tests a model to explain the behavior of dissolved Si during early diagenesis in sediments. The model assumes that low-Fe clays and other minerals can be treated simply as Al hydroxides, having attached silica. When the minerals are placed in seawater solutions, Si is released, causing exposure of fresh Al-octahedra. which are reactive toward Si and other elements in solution. Standard clays (kaolinite, montmorillonite) and solid silicic acid were suspended in seawater solutions in various combinations and dissolved Al, Si, Ca, pH and alkalinity were determined as a function of time. The theoretical model correctly predicts the behavior of Si in mixtures of the different minerals, based upon the dissolution behavior of the minerals in suspension alone. Further, the decrease in the alkalinity of kaolinitecontaining seawater solutions, where carbonate dissolution, organic matter decomposition and reduced sulfur oxidation are apparently unimportant, can be predicted from a simple extrapolation of the silica model results. The alkalinity changes observed in this study, as well as the pH changes observed in standard clay suspensions by other researchers, can be explained simply by equilibration of the charge on exposed Al-octahedra with the pH of the surrounding waters. The results of this study indicate that theoretical models of Si diagenesis in sediments should have general usefulness for predicting the effects of clay dissolution on sediment properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.