Abstract

Density fluctuation driven by cluster formation causes drastic changes in the dielectric breakdown characteristics of supercritical fluids that cannot be described solely based on the conventional Townsend’s gas discharge theory and Paschen’s law. In this study, we model the dielectric breakdown characteristics of supercritical CO2 as a function of pressure based on the electron scattering cross section data of CO2 clusters that vary in size as a function of temperature and pressure around the critical point. The electron scattering cross section data of CO2 clusters are derived from those of gaseous CO2. We solve the Boltzmann equation based on the electron scattering cross section data to obtain critical electrical fields of various cluster sizes as a function of pressure. To validate our model, we compare the modeled breakdown voltage with the experimental breakdown measurements of supercritical CO2, which show close agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.