Abstract

This research describes a probabilistic approach for developing predictive models of how students learn problem-solving skills in general qualitative chemistry. The goal is to use these models to apply active, real-time interventions when the learning appears less than optimal. We first use self-organizing artificial neural networks to identify the most common student strategies on the online tasks, and then apply Hidden Markov Modeling to sequences of these strategies to model learning trajectories. We have found that: strategic learning trajectories, which are consistent with theories of competence development, can be modeled with a stochastic state transition paradigm; trajectories differ across gender, collaborative groups and student ability; and, these models can be used to accurately (>80%) predict future performances. While we modeled this approach in chemistry, it is applicable to many science domains where learning in a complex domain can be followed over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.