Abstract

The model of the semiconductor quantum dot with a multilayer shell and the quantum dot-human serum albumin bionanocomplex, which are contained in a living cell, was constructed. The regularities of changes in deformation of materials of the CdSe-core / ZnS/CdS/ZnS-shell quantum dot with changes in cell elasticity (comprehensive modulus) at different core radii, thicknesses of individual shell layers, and surface concentration of albumin molecules were investigated. It is shown that the presence of human serum albumin on the surface of the quantum dot significantly increases its sensitivity to pressure caused by the surrounding medium (living cell). The obtained results indicate the prospect of using the core-shell quantum dot-human serum albumin bionanocomplexes for the diagnosis of cancer diseases in the early stages. This is due to the fact that such diseases are accompanied by a sharp change in the elasticity of the cell (its elastic constants).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.