Abstract

Previous studies have quantified the longitude gradients in E × Bdrift associated with the four‐cell tidal structures and have confirmed that these sharp gradients exist on a day‐to‐day basis. For this paper, we incorporate the Ion Velocity Meter (IVM) sensor on the Communications/Navigation Outage Forecasting System satellite to obtain the daytime, verticalE × B drift velocities at the magnetic equator as a function of longitude, local time, and season and to theoretically calculate the F region ion densities as a function of altitude, latitude, longitude, and local time using the Global Ionosphere Plasmasphere model. We compare calculated ion densities assuming no longitude gradients in E × Bdrift velocities with calculated ion densities incorporating the IVM‐observedE × Bdrift at the boundaries of the four‐cell tidal structures in the Peruvian and the Atlantic longitude sectors. Incorporating the IVM‐observedE × B drift velocities, the ion density crests rapidly converge to the magnetic equator between 285 and 300°E geographic longitude, are absent between 300° and 305°, and move away from the magnetic equator between 305° and 340°. In essence, the steeper the longitude gradient in E × B drifts, the steeper the longitude gradient in the equatorial anomaly crest location.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.