Abstract

Experimental studies show that human pain sensitivity varies across the 24-hour day, with the lowest sensitivity usually occurring during the afternoon. Patients suffering from neuropathic pain, or nerve damage, experience an inversion in the daily modulation of pain sensitivity, with the highest sensitivity usually occurring during the early afternoon. Processing of painful stimulation occurs in the dorsal horn (DH), an area of the spinal cord that receives input from peripheral tissues via several types of primary afferent nerve fibers. The DH circuit is composed of different populations of neurons, including excitatory and inhibitory interneurons, and projection neurons, which constitute the majority of the output from the DH to the brain. In this work, we develop a mathematical model of the dorsal horn neural circuit to investigate mechanisms for the daily modulation of pain sensitivity. The model describes average firing rates of excitatory and inhibitory interneuron populations and projection neurons, whose activity is directly correlated with experienced pain. Response in afferent fibers to peripheral stimulation is simulated by a Poisson process generating nerve fiber spike trains at variable firing rates. Model parameters for fiber response to stimulation and the excitability properties of neuronal populations are constrained by experimental results found in the literature, leading to qualitative agreement between modeled responses to pain and experimental observations. We validate our model by reproducing the wind-up of pain response to repeated stimulation. We apply the model to investigate daily modulatory effects on pain inhibition, in which response to painful stimuli is reduced by subsequent non-painful stimuli. Finally, we use the model to propose a mechanism for the observed inversion of the daily rhythmicity of pain sensation under neuropathic pain conditions. Underlying mechanisms for the shift in rhythmicity have not been identified experimentally, but our model results predict that experimentally-observed dysregulation of inhibition within the DH neural circuit may be responsible. The model provides an accessible, biophysical framework that will be valuable for experimental and clinical investigations of diverse physiological processes modulating pain processing in humans.

Highlights

  • The processing of pain engages a wide variety of neural circuits across the nervous system including those in the spinal cord, brainstem, thalamus, and cortex

  • Patients suffering from neuropathy, a disease resulting from nerve damage leading to an increase in pain sensitivity, experience an approximately 12-hour shift in their rhythmicity such that the highest sensitivity occurs in the afternoon

  • Our model predicts that a potential mechanism underlying the shift in rhythmicity for neuropathic pain is a change in the interaction of the nerve fibers from inhibition to excitation

Read more

Summary

Introduction

The processing of pain engages a wide variety of neural circuits across the nervous system including those in the spinal cord, brainstem, thalamus, and cortex. It is thought that the dorsal horn (DH), an area of the spinal cord, serves as the initial processing center for incoming nociceptive, or painful signals, with the midbrain and cortex providing top-down modulation to that circuitry [1]. There is a tradition of modeling pain processing by focusing exclusively on spinal cord circuitry. This circuitry receives information about stimulation of peripheral tissues from several types of primary afferent nerve fibers. These afferents have their cell bodies in the dorsal root ganglia (DRG), a cluster of nerve cell bodies located exterior to the spinal cord, and their axons (or fibers) target the DH [2]. Among the neuronal populations in the DH, the projection neurons (PNs) receive input from all fibers and constitute the majority of the output from the dorsal horn circuit up to the brain

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call